
Teaching Robots to PAANIC: Personal Assistive
Agents Noticing Impending Catastrophes

Liam Pavlovic, Brant Wesley, and Abby Carr

Index Terms—Natural Language Processing, Robotics
Abstract—Robotic advancements call for the further applica-

tion of Natural Language Processing (NLP) and the ability of
robots to understand natural language instructions from humans.
As such, we have developed a method to reduce mistakes in
robotic following of human commands by implementing hazard
tagging on natural language instructions, which can then be
modified into the real-life application of robotic grip strength,
general procedure for a task, and navigation of dangerous
situations.

I. INTRODUCTION

Robots have become ingrained into the world around us.
They control a large number of functions from specific tasks
in manufacturing cars to translating languages from around
the world. We use them as a part of how we live, and as
we have adapted to having these computers as a large part of
our life, we have begun researching how to give them more
and more complicated tasks. Instead of following a simple
and single direction, we want robots to be able to adapt
and complete more complete tasks with less knowledge. For
example, instead of having a specific spoken or typed phrase
that triggers a robot to move forward, we want that robot to
be told to explore and be able to move freely around a given
space. It is this example that encompasses the drive forward
to robots who can act freely and, in our eyes, become more
helpful.

While this expansion and goal applies to many different
facets of robotics, for the scope of our task we focused on
specifically home assistive robots. While you may think of an
audio home robot connected to the electricity or thermostat of
a home, in this case we mean a moving robot with free range
to explore and assist throughout the home with physical tasks
that may include tending a garden or assisting with cooking.
They would be another piece of the home and likely have
some level of autonomy. This may not be commonplace at
the moment, but home-assistive robots (as you will continue
to see them referred to as) have been depicted in all types of
media and are a common picture you see when thinking about
the future of technology.

Home-assistive robots are of special interest when it comes
to the task of detecting hazards. These robots are likely to
deal with one to many individual humans, along with pets,
and will need to be able to adapt and respond based on these
individuals in the given household. Whether instructions are
given through natural language, typed, or a set list of options,
a physical robot will need to complete tasks in a dynamic
environment with real and present dangers to both the robot

and the humans around it. It is unlikely that all owners or
people interacting with a home-assistive robot will have the
ability to keep track of and stop all potential dangers, meaning
the robots will need to be able to acknowledge and respond
to danger.

For our purposes, we wanted to focus on the detection of
those hazards. We believe that there is value in robotic plan-
ning that will come in the reaction to the recognition of certain
hazards, and wanted to set the foundation for planners by
first detecting hazards themselves. Our focus lies in extracting
hazards from sets of natural language instructions- those that
may be typed or spoken. Our goal is to test the first round of
models on extracting hazards from these instructions.

To this end, we have developed a dataset and a series of
natural language models for tagging the hazards implicit in a
set of instructions given to a robotic system. For the purpose
of this paper, we have specifically focused on the context of a
robot performing tasks in a kitchen - from preparing food to
locating and washing dishes. We wanted to tag the directives
to mime the way a human may know a knife is sharp and
therefore dangerous, or how a oven can be hot.The tags given
to the data correspond to various hazards present in a kitchen,
and were applied to a selection of data points from the TEACh
dataset by hand.

Upon completion of the creation of the dataset, we then
trained several different neural networks with this dataset
in order to assess how well various architectures could
detect potential hazards in this data. We hoped to find
the baseline performance capabilities of the models we
created and find insights for what we might leverage for
hazard tag modeling as well as provide a path for future action.

II. MOTIVATION

As research in the world of robotics continues to blossom
and become ever more integrated into everyday life, it is
important that robots be able to recognize the potential hazards
and missteps in the tasks they face. While robots are often
given instructions that may not be inherently perilous, the
unpredictable nature of real-world environments means that
there will be factors that the robot cannot necessarily control
for. Additionally, the instructions given to a robot may not
necessarily present an immediate hazard - just the potential for
an accident to occur should the robot malfunction or the state
of the world around the robot suddenly changes (like the onset
of an earthquake or the sudden appearance of a wild boar).
Whatever may happen, it is imperative that a robot be aware



of how the objects it interacts with may become hazardous to
the robot or those around it should something go wrong.

In the daily lives of many, dangers occur in many different
ways and in many different forms. As we advance in the
development of robotic implementations in the real world, one
of the most important things to think about is adaptability.
Without adaptability, robots may be able to cause harm to
themselves and others- whether that is their intended purpose
or not. As such, we intend to pursue one branch of the
expansion by looking at hazard identification. As we will
address in our related works, it is not novel for machine
learning tasks to focus on extraction or safety. We do however
plan to explore extraction and safety; more specifically, we
wish to explore the novelty of targeting the safety surrounding
robots and the scope in which they operate. It is our hope that
with recognition programs for robots, we can minimize the
danger that is created with an increasing implementation of
them in our world.

Finally, we wish to mention the unique aspect of our work.
While we wish to provide important and useful results from
our work, the purpose and importance in this task additionally
comes from the exposure our research brings with it. It may
be commonplace to think of the pitfalls in safety that have
potential to occur when it comes to a self-driving car, but it
is not addressed in a wider and more applicable scope for
the rest of robotics. Our work could start the groundwork of
addressing flexible safety measures in robots, and can leave
a path to follow and branch off of when it comes to seeing
how we plan to insure robots.

III. RELATED WORK

There is not much work regarding the specific tagging of
elements of NLP instructions, but two interesting papers on
extracting elements from unstructured text provide similar
methods to those we will trace throughout PAANIC!. Kwayu’s
paper [1] on the extraction of hazardous actions from police
statements utilized n-gram feature analysis to assist engineers
in obtaining the necessary information to figure out what type
of accident a given statement is about. This technique is one
we want to investigate further as we build our model, as the
ability to identify a ’hazard’ is a shared part of our project like
that of Kwayu. The other relevant paper pertains to extracting
hazards from unstructured text with the additional task of
finding the dynamics of said events. This paper by Wang [2]
instead utilized geographic information system (GIS) mapping
to extract the information from tweets. Similar to the first
paper, we find the methods of extraction relevant to the work
we wish to do in the NLP sector.

The other work related to our hazard tagging falls under
a number of different umbrellas. Andrade [3] analyzes
existing hazard data pertaining to wildfires which relates to
the application aspect of our work. Johannes [4] identifies
required elements from a textual write-up of chemical
accident reports, while Li [5] and Ma [6] find key elements in
the hazard and operability analysis text and geological hazard

documents respectively. The extraction of data from hazards
seems to be a common thread uncovered when searching
for work with NLP and hazards. Another similar example
lies with Daramola [7] who wrote about the development
of an automated safety analysis tool and in Kwon [8] who
made an automation of creating and finding construction
safety requirements for a given project. All of the related
work clearly shows that NLP analysis of hazards is not
uncommon, and that moving in the direction of robotic
hazard conscientiousness is a natural progression from
existing work.

IV. TASK DESCRIPTION

For data, we used the TEACh dataset for our inputs which is
a ”dataset of human-human interactive dialogues to complete
tasks in a simulated household environment.” [9] This dataset
is publicly available for use and download.

We obtained the instructions by selecting the instruction
given to the robot by a human in the dialogues used in
the simulator. Due to time constraints, we used a subset of
around 7000 instructions as a mini-batch to label to help
us recognize any issues and standardize our labeling process
before moving forward to a larger section of the TEACh data.
In order to manually apply the labels, we read the sentences
of instructions given to the robots and applied whatever labels
we deemed relevant.

The focal point of the dataset for our project was the
labeling and cementing of labels for our data. We labeled a
small subset of data with a small set of tags: Fragile, Hot ,
Sharp, Slippery, Electricity, Wet, and, the default, No Hazard.
Although all the tags deal with safety, they primarily focus
on the safety of a robotic system while preforming actions
with an easy expansion into tagging for the purposes of user
safety. This could be expanded in the future with the addition
of more tags based on different or more complex hazards,
such as ”falling hazard” or ”sticky”, or things that may be
hazardous to a nearby human (or other organism) but not the
robot itself, such as ”biohazard”.

While assigning labels to the data was in most cases
relatively straightforward, there were some scenarios in which
we felt that the necessary labels for a sentence were some-
what ambiguous and some assumptions were necessary. For
instance, while we labelled most interactions with appliances
such as toasters and microwaves with the ”electric” tag, we
chose not do the same for stoves, as a non-negligible subset
of stoves are gas, not electric. Likewise, we also made the
assumption that coffee would always be hot rather than iced,
since the instructions in the dataset involving coffee always
referred to a classic drip coffee machine, which always makes
hot coffee.

Additionally, while instructions requiring the robot to in-
teract with appliances almost always resulted in a ”hot” or
”electric” tag and utilizing the sink would result in a ”wet”
tag, did not apply these tags to instructions that used these
appliances and objects as waypoints to tell the robot where



something is. For instance, if an instruction told the robot
to grab the lettuce from the cabinet next to the microwave,
this would not result in an ”electric” tag because the robot
does not interact with the microwave. Because of these various
nuances in the data, the models may require a greater amount
of training data in order to learn these more subtle relationships
between items and the hazards they may or may not present
depending on the context of how they are referenced.

To clean the textual data we want to work with, we simply
extracted the text instructions and removed commands less
that 4 words in length. This cutoff was chosen in order to
reduce the number of extraneous greetings and comments that
are outside the scope of our project goals (ex. the inclusion of
”hi!” as an instruction).

When labeled, our data showed a slightly uneven distribu-
tion of tags with fragile being the most prevalent and slippery
being the rarest. (Fig. 1.) This uneven result was not too severe
considering the multi-label nature of each data point we had,
and considering some points had no labels at all.

Fig. 1. The number of entries for each hazard tag as well as the number of
entries with no hazard tags

V. METHOD

We developed and tested four different neural network
architectures for the hazard tagging task. The simplest of these
was a basic feed-forward network. The input of this network
is a flattened sequence of GloVe embeddings representing
the words of the input sentence. Since feed-forward networks
must have constant input size, these sequences padded to a
maximum length and sentences longer than this length are
dropped from the training set. The GloVe embeddings used are
the ”glove-wiki-gigaword-200” embeddings from the Python
gensim library. This network has 4 hidden layers of size 1000,
500, 100, and 50, in that order. Each of these hidden layers
uses ReLU activation. The final output layer uses sigmoid
activation to compute an individual likelihood estimate for
each of the six potential hazard tags.

Our next neural architecture utilized a basic recurrent neural
network (RNN) to generate a semantic vector that was then
passed through a feed-forward network. The inputs to the RNN
were the same embeddings used for the feed-forward network,

except they were input sequentially, rather than as a whole,
and were not padded. The RNN has three recurrent layers that
each had size 1000 hidden state. The final hidden states from
each recurrent layer were combined into a 3000 long semantic
vector which was then fed into a feed-forward network. This
feed-forward network has the same architecture as our feed-
forward model.

In order to expand upon the basic RNN, we also im-
plemented an RNN with Long Short-Term Memory units
(LSTMs). This model took inputs in the same manner as the
basic RNN, as this type of network operates in essentially the
same manner at a high level with network at each timestep
receiving information about the previous timestep’s state as an
input. However, the LSTM receives both the previous hidden
state as well as the previous LSTM cell state as inputs, as
opposed to a basic RNN which only receives the previous
hidden state.

The LSTM unit includes several ”gates”: the forget gate
(sigmoid followed by multiplication), which learns what in-
formation should be forgotten at the time step; the input gate
(a tanh and sigmoid multiplied together, given the previous
hidden state and input), which determines what values in the
input are important for the cell state; and the output gate (the
sigmoid of the input/previous hidden stated multiplied by the
hyperbolic tangent of the cell state), which determines the
output of the network at this time step (the next hidden state).

The LSTM unit relies largely on the cell state for the
determination of its ouput, as this portion of the cell receives
as input the previous LSTM cell state and receives information
from the input and forget gates to help determine the output
of the LSTM unit. The cell state is also passed on to the next
timestep along with the hidden unit to help inform the cell
state of the next time step (if there is one).

Our final and best performing network architecture uses a
pre-trained BERT model to create a semantic vector for the
input sentence which is then passed through a feed-forward
network to classify the sentence into tags. The pre-trained
BERT model utilized is HuggingFace’s ”bert-base-uncased”
model. This model is pre-trained on the masked language mod-
eling objective on a combined dataset of books and Wikipedia
articles written in English. The BERT model receives two
inputs the first of which is a sequence of numerical tokens
representing the words of the input sentence produced by
a one-to-one mapping of corpus words to numbers. This
sequence is padded at the end to a maximum length for
computational efficiency purposes. A [CLS] token is also
inserted to the beginning of each sequence. The model also
receives an attention mask as input, which is the same length
as the token sequence and indicates which tokens are padding.
The BERT model itself is a series of transformer encoder
blocks. From these two inputs, the BERT model produces an
embedding for each token in the original token sequence. Our
model only utilizes the embedding for the [CLS] token, which
is configured to pool the embeddings from the other tokens
and thus is a semantic vector for the entire sentence. This
embeddings is passed through a feed-forward network with



two hidden layers of sizes 100 and 50 in that order. Each
of these hidden layers utilizes ReLU activation. The hidden
layers are followed by an output layer which utilizes sigmoid
activation to compute an individual likelihood estimate for
each of the six potential hazard tags. (Fig. 2.)

Fig. 2. A high-level overview of the architecture of our BERT model

Each model was trained until continued epochs no longer
increased accuracy performance on the training set. The best
performing models tended to require fewer epochs to reach
this point, with BERT requiring the fewest epochs at 15 and
the feed-forward network requiring the most at 50. The loss
curves for each model can be seen in the figure below. (Fig.
3.)

Fig. 3. Loss curves for our 4 models

VI. EVALUATION

To evaluate our models, we used accuracy, precision, and
recall metrics. Accuracy was measured by considering a
model’s prediction correct only if it predicted the exact set
of golden hazard tags for that input sentence. Precision and
accuracy were measured for each hazard tag separately and
then averaged to measure overall performance Table 1 shows

the performance of each of our four architectures on these
metrics.

To better understand how the unbalanced nature of our data
set affects the models, we examined the individual recall and
precision scores achieved for each hazard tag by our best
performing architecture, the BERT model. Table 2 shows these
results.

Lastly, to present the differences in classification between
the models, we ran the sentence ”Boil a sliced potato and wash
a plate” through each of our model’s to see which hazard tags
each model assigned to it. Table 3 shows these results.

VII. RESULTS

Overall, the results in Table 1 show that non-recurrent mod-
els perform the worst on this task. Classical recurrent models
perform better than non-recurrent and models with attention,
like BERT, perform the best. These results are not particularly
surprising as transformer’s outperform other models on most
natural language processing tasks. However, an interesting
result to note is that the basic RNN model outperformed the
LSTM model. LSTM architecture was originally conceived
as a way to extend the interaction distance between tokens
in a recurrent network. However, most relevant interactions
for this task are fairly immediate and usually prepositional.
For example, the sentence ”get the knife from the sink”
would have the wet hazard tag but the sentence ”get the
knife from the counter opposite the sink” would not. Thus,
the LSTM architecture is not a great fit for this task and
the semantic vector would capture many interactions that are
irrelevant to the classification task. The noise introduced by
this extraneous information could be the cause of the LSTM’s
lower performance.

The results from Table 2 suggest an overall trend that the
more common a tag is, the better the model performs on it.
This result is not very surprising, as model’s usually perform
better on tasks that they have more data for. One outlier
from this overall trend is the electricity tag, which had worse
performance than both the less common sharp and wet tags.
This is likely because recognizing an electrical hazard often
requires more advanced understanding of the input sentence.
Recognizing the wet and sharp tags usually only requires
recognizing the presence of a liquid or the usage of a knife.
Meanwhile, recognizing the electrical tag usually requires ex-
tracting spatial information from the instruction. For example,
the sentence ”slice the potato next to the microwave” has the
electrical hazard tag because the robot will be utilizing a metal
tool near the cord of the microwave.

The results from Table 3 follow the same general trend
of the BERT Encoder outperforming the model. Interestingly,
the RNN is the only model that did not incorrectly classify
the input as having the electricity hazard tag. Most likely, the
other models have an incorrect association with some words
in the sentence and the electricity label due to over-fitting on
noise in the training set. The RNN did not over fit on this
noise by coincidence. Another interesting result is that the
BERT encoder was the only model to successfully recognize



the slippery tag. This tag has the least number of entries in
the data set and is therefore the most difficult for the models
to recognize.

VIII. CONCLUSION

The main contribution of this study is the introduction of a
new task for cognitive robotics. As discussed earlier, teaching
robots to recognize hazards in the instructions they are given
has not been explored yet. The ability to recognize implicit
meanings in sentences is an important feature for robot-human
communication in general. That said, recognizing implicit
hazards is of particular importance because of the potential
damages, to both humans and property, that lacking this skill
can cause.

In this study, we provide a dataset for learning this task and
a performance baseline. An immediate next step would be
to improve performance by expanding the dataset and adding
more variety to the types of instructions. The instructions
from the TEACh dataset are almost entirely for a small set of
kitchen tasks. This expanded dataset could also include more
hazard tags, representing hazards that were not really relevant
to the instructions in the TEACh dataset. Adding variety to the
dataset, particularly in the types of tasks the instructions are
detailing, will help the model generalize better to all household
tasks.

Another important next step is integration with a robotic
controller. Now that the hazards in instructions can be identi-
fied, it’s important that robots actually adjust their behavior to
avoid the hazard. For example, when detecting the sharp tag,
a robot may tighten its grip on held objects and move around
its environment slower than it would normally.

To better enable integration with a robotic planner, exploring
a multimodal approach for this task is another avenue worth
exploring. Namely, having an algorithm that enables a robot
to segment its environment to locate where specifically the
hazards are will allow a robotic planner to generate a more
effective plan for avoiding that hazard.

REFERENCES

[1] K. M. Kwayu, V. Kwigizile, J. Zhang, and J.-S. Oh, “Semantic n-gram
feature analysis and machine learning–based classification of drivers’ haz-
ardous actions at signal-controlled intersections,” Journal of Computing
in Civil Engineering, vol. 34, no. 4, p. 04020015, 2020.

[2] W. Wang, Automated spatiotemporal and semantic information extraction
for hazards. The University of Iowa, 2014.

[3] S. R. Andrade and H. S. Walsh, “Wildfire emergency response hazard
extraction and analysis of trends (heat) through natural language process-
ing and time series,” in 2021 IEEE/AIAA 40th Digital Avionics Systems
Conference (DASC). IEEE, 2021, pp. 1–10.

[4] J. I. Single, J. Schmidt, and J. Denecke, “Knowledge acquisition from
chemical accident databases using an ontology-based method and natural
language processing,” Safety Science, vol. 129, p. 104747, 2020.

[5] F. Li, B. Zhang, and D. Gao, “Chinese named entity recognition for hazard
and operability analysis text,” in 2020 Chinese Control And Decision
Conference (CCDC). IEEE, 2020, pp. 374–378.

[6] Y. Ma, Z. Xie, G. Li, K. Ma, Z. Huang, Q. Qiu, and H. Liu, “Text
visualization for geological hazard documents via text mining and natural
language processing,” Earth Science Informatics, pp. 1–16, 2022.

[7] O. Daramola, T. Stålhane, I. Omoronyia, and G. Sindre, “Using ontologies
and machine learning for hazard identification and safety analysis,” in
Managing requirements knowledge. Springer, 2013, pp. 117–141.

[8] J. Kwon, B. Kim, S. Lee, and H. Kim, “Automated procedure for
extracting safety regulatory information using natural language processing
techniques and ontology,” GEN, vol. 30, p. 1, 2013.

[9] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-
Chen, S. Gella, R. Piramuthu, G. Tur, and D. Hakkani-Tur, “Teach:
Task-driven embodied agents that chat,” arXiv preprint arXiv:2110.00534,
2021.



TABLE I
MODEL PERFORMANCE

FFNN Simple RNN RNN with LSTM BERT Encoder

Accuracy .5226 .5800 .5501 .6373

Avg Precision .6255 .6947 .6988 .7232

Avg Recall .6249 .6326 .5929 .6914

TABLE II
BERT INDIVIDUAL TAG RESULTS

Hazard Tag Precision Recall

Fragile .8345 .8098
Hot (temperature) .7257 .7611
Sharp .7976 .8375
Slippery .5873 .3854
Electricity .6167 .6352
Wet .8037 .7197

TABLE III
TAGGING THE EXAMPLE

{sharp} {fragile} {hot} {electricity} {wet} {slippery}

FFNN x x x

Simple RNN x x

RNN with LSTM x x x x

BERT Encoder x x x x x

Golden Label x x x x


	Introduction
	Motivation
	Related Work
	Task Description
	Method
	Evaluation
	Results
	Conclusion
	References

